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Abstract

This paper aims at developing an elementary theory of two-dimensional (2D)
parameter-induced stochastic resonance (PSR) to contribute to nonlinear image
processing. In order to tackle the application of SR in image processing, where
adding noise may not be an easy task, we propose to generalize the concept
of PSR from the one-dimensional (1D) case to the 2D case. An interesting
feature of this paper is that a rigorous analytical framework is developed based
on the Fokker–Planck equation (FPE). Some applications to image processing
are performed to demonstrate the effectiveness of the approaches based on the
proposed theory of 2D PSR. It is believed that the PSR-based methodology
as advocated in this paper provides a different, but promising perspective for
applying SR techniques to nonlinear image processing.

PACS numbers: 05.40.−a, 02.50.−r

1. Introduction

In order to introduce the mechanism of stochastic resonance (SR), let us consider a heavily
damped particle of mass m and viscous friction γ, moving in a symmetric double-well potential
U(x) (see figure 1(a)). If we apply a weak periodic forcing to the particle, the double-well
potential would be tilted asymmetrically up and down, periodically raising and lowering the
potential barrier, as shown in figure 1(b). The fluctuational forces cause transitions between
the neighboring potential wells with a rate named Kramers rate [1]. Generally, the weak
periodic forcing itself cannot cause the particle to roll periodically from one potential well
into the other one. However, noise-induced hopping between the potential wells can become
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(a) (b)

Figure 1. (a) Symmetric double-well potential. (b) Double-well potential under periodic weak
forcing.

synchronized with the weak periodic forcing. This statistical synchronization takes place when
the average waiting time between two noise-induced inter-well transitions is comparable with
half the period of the periodic forcing. This phenomenon is called stochastic resonance.

Usually, noise is thought to be annoying. Stochastic resonance, in contrast, is a
phenomenon in which noise can be used to enhance, rather than hinder, the system
performance. For example, the output signal-to-noise ratio (SNR) of the double-well SR
system will be maximized when an optimal amount of additional noise is added to the input
[1]. The concept of SR was first proposed by Benzi in 1981, addressing the problem of the
periodically recurrent ice ages [2]. It has a broad range of application areas, such as in physics,
chemistry, biomedical sciences and engineering systems [1, 3–7]. Balance control and speech
understanding are just two of its applications. The balance control abilities of elderly people
can be enhanced with the aid of noise [3]. Profoundly deaf people can better understand
speech when a certain amount of noise is added to the vowel coding for cochlear implants [3].
Other applications include signal detection [5, 8–13], signal transmission [6, 14] and signal
estimation [7].

The noise can become beneficial, but only when the synchronization between the input
signal and the noise occurs through a properly chosen nonlinear system. For conventional SR,
the SR effect is realized by adding an optimal amount of noise into the system [1]. Recently, a
new approach, called parameter-induced stochastic resonance (PSR), is proposed to realize the
synchronization by optimally tuning the system parameters without adding any noise [15–21].
It has been proved that by adjusting the parameters, SR realized by the conventional method
(adding noise) is an optimization problem in a subregion of the parameter space [15]. When
SR is realized by tuning the system parameters (with some fixed noise level) at an inner point
of the parameter space, the fixed noise level is just the optimum noise level for the conventional
SR. We have already successfully applied PSR to one-dimensional (1D) signal processing,
such as the recovery of noisy multi-frequency signals [16] and the transmission of baseband
binary signals over noisy channels [19].

In fact, besides 1D signal processing applications, image processing is another potential
application area of SR techniques. Image processing techniques have been widely applied to
different areas, such as diagnosing tumors in medical images, detecting and identifying hostile
targets in military images. In order to enhance the images corrupted by noise, de-noising
algorithms are conventionally used to remove or suppress noise from the images. Recently,
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some research results taking advantage of noise have been obtained on image processing using
the SR technique [22–25]. However, two main shortcomings may be identified. First, most
of these research papers are based on simulations and lack theoretical analysis. Second, these
approaches are based on the conventional SR method by adding an optimal additional noise
into the system, which is not practical for some image processing applications. In contrast,
PSR can achieve the SR effect without adding any noise. But our initial research has shown
that it is not effective to directly process the images using 1D bistable filters because every
image pixel is related to pixels nearby in any direction. In order to extend the applications
of SR techniques in the image processing area, an entirely new theory about 2D SR must
be developed. This paper aims at developing a theoretical foundation of 2D PSR for the
application of SR in image processing without adding any noise. A new 2D nonlinear SR
system is first proposed by extending the concept of PSR from the 1D case to the 2D case. The
stochastic characteristics of this SR system are then derived. It is our belief that the approach
based on our proposed 2D PSR provides an innovative and promising method to nonlinear
image processing using SR techniques.

2. Two-dimensional SR systems and the related Fokker–Planck equation

Similar to the one-dimensional nonlinear bistable SR system [15], we propose the following
two-dimensional nonlinear SR system:

∂2w

∂x∂y
= −γ

(
∂w

∂x
+

∂w

∂y

)
+ f (w) + �(x, y), (1)

where w = w(x, y) is the state variable (system output), γ
(

∂w
∂x

+ ∂w
∂y

)
, (γ > 0) is the damping

term, f (w) = − ∂U(w)

∂w
= aw − bw3 + h, U(w) is the double-well potential, h is the original

signal, γ, a, b are the system parameters to be adjusted, and �(x, y) is the Gaussian white
noise with

〈�(x, y)�(x1, y1)〉 = 2Dδ(x − x1, y − y1). (2)

Here D is the noise intensity, and is related to noise variance σ 2 by σ 2 = D
�t2 in the 2D case,

where �t is the sampling interval in both directions x and y. h + �(x, y) can be viewed as
the input.

First, we reduce the partial differential equation (1) to a set of ordinary differential
equations along the line x = x0 + t�x, y = y0 + t�y (here �x, �y represent the lengths of
one pixel. For convenience, we define �x = �y = 1). Equation (1) then becomes
⎧⎪⎨
⎪⎩

dw

dt
= �xv = v,

dv

dt
= −γ (�x + �y)v + �yf (w) +

1

�x
�1(t) = −2γ · v + f (w) + �1(t),

(3)

where 〈�1(t)�1(t1)〉 = 2Dδ(t − t1). The corresponding Fokker–Planck equation (FPE) [26]
for probability density function (PDF) ρ(w, v, t) is

∂ρ(w, v, t)

∂t
= − ∂

∂w
[vρ(w, v, t)] − ∂

∂v
[(−2γ · v + f (w))ρ(w, v, t)] + D

∂2ρ(w, v, t)

∂v2
. (4)

Note that equation (4) is clearly independent of (x0, y0), thus the solution of this equation will
be valid for any (x0, y0).
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2.1. Stationary solution of equation (4)

Let ρ0(w, v) be the stationary solution satisfying the following equation:

− ∂

∂w
[vρ0(w, v)] − ∂

∂v
[(−2γ · v + f (w))ρ0(w, v)] + D

∂2ρ(w, v, t)

∂v2
= 0. (5)

The solution of equation (5) is

ρ0(w, v) = e−φ(w,v), (6)

where

φ(w, v) = γ

D
v2 − 2γ

D

∫ w

0
f (w) dw − ln N0, (7)

with N0 being the normalized factor.

2.2. Non-stationary solution of equation (4)

We rewrite equation (4) as

∂ρ

∂t
= − ∂

∂w
(D1ρ) − ∂

∂v
(D2ρ) + D22

∂2ρ

∂v2
= LFP(ρ), (8)

where LFP(•) is the Fokker–Planck operator and

D1 = v, D2 = −2γ · v + f (w), D22 = D. (9)

Letting ρ = ξ(w, v) e−λt , equation (8) becomes

λξ(w, v) = −LFPξ(w, v). (10)

This is an eigenvalue problem of the operator −LFP(•). Thus the solution of equation (8) can
be written as [15]

ρ(w, v, t) = ρ0(w, v) + ρ1(w, v) e−λ1t + ρ2(w, v) e−λ2t + · · · , (11)

where ρ0(w, v) is the stationary solution, ρ1(w, v), ρ2(w, v), . . . , are determined by the initial
conditions, λ1, λ2, . . . , are the eigenvalues of −LFP(•).

Assuming Re λ1 < Re λ2 < · · ·, the term ρ1(w, v) e−λ1t of equation (11) will dominate
the transient process. We define Re λ1 as the response speed of the system (4). Let

ξ(w, v) = ψ(w, v) e−φ/2, (12)

where φ is defined in (7). Thus, equation (10) becomes

λψ = −Lψ, (13)

where L is a differential operator defined by

Lψ = eφ/2LFP(e
−φ/2ψ)

= eφ/2 ∂

∂w
(D1 e−φ/2ψ) − eφ/2 ∂

∂v
(D2 e−φ/2ψ) + eφ/2D22

∂2

∂v2
(e−φ/2ψ). (14)

Furthermore, we assume that ψ has the following asymptotic property:

ψ(w, v) = O(e−φ/2), w → ±∞, v → ±∞. (15)

As calculating λ1 is quite complicated, we will then calculate, instead, the eigenvalues of the
symmetric part −Ls of the operator −LFP(•) :

Ls = 1

2
(L + Lc) = eφ/2 ∂

∂v

[
D22 e−φ ∂

∂v
(eφ/2)

]
. (16)
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Figure 2. In simulation, we tune noise intensity from zero to 4 to see the SR phenomenon of the
output image. The system parameters are γ = 0.1, a = 0.5, b = 0.01.

It is obvious that −Ls is a semi-positive definite operator. Therefore, the eigenvalues of
−Ls as λs

0, λ
s
1, λ

s
2, . . . , are real and nonnegative. Assuming 0 = λs

0 < λs
1 � λs

2 � · · ·,
we have proved that λs

1 is a lower bound of Re λ1 . In the following sections, we regard
λs

1 as the response speed to estimate the speed tending to the stationary solution. When
λs

1t >> 1, ρ(w, v, t) ≈ ρ0(w, v). In practice, we often choose λs
1t = 3. Thus the error

magnitude is about e−3 ≈ 0.05 which can be acceptable. λs
j can be written as the Rayleigh

quotient form:

λs
j = st.

ψ �=0

∫∫
D22 · e−φ

[
∂
∂v

(eφ/2ψ)
]2

dw dv∫∫
ψ2 dw dv

, j = 0, 1, 2, . . . , (17)

where st.(•) is the stationary value of the functional.

3. Image processing using 2D PSR

Suppose a binary image (image with two gray degrees, h = +A for white and h = −A for
black) is corrupted by a Gaussian white noise. The 2D bistable system (1) can be used as a
nonlinear filter to process noisy images and improve its quality, and its output bit error rate
(BER) can be written as [19]

Pe ≈ PA

∫ 0

−∞
ρ(w, Tb |A) dw + P−A

∫ +∞

0
ρ(w, Tb |−A) dw, (18)

where ρ(w, Tb|±A) = ∫ +∞
−∞ ρ(w, v, Tb) |h=±A dv, ρ(w, v, T b) is obtained from

equation (11) where the first two terms are retained, Tb is the length of pixels with the
same input value h, PA and P−A are the probabilities of the input value being +A or −A. Thus
the optimization problem is described as

min
γ,a,b;D=const,λs

1Tb≈3
Pe. (19)
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(a) (b)

(c) (d)

Figure 3. (a) Original image. (b) Image corrupted by Gaussian white noise with D = 1.
(c) De-noise image using equation (20) with γ = 0.775, a = −0.75, b = 0.2 and BER = 6.92%.
(d) De-noise image using low-pass spacial filter with impulse response

h = 1
9

[ 1 1 1
1 1 1
1 1 1

]
and zero threshold, the output BER = 8.08%.

In dealing with equation (19) we first choose λs
1Tb = 3 to make the error magnitude less than

0.05. Thus the equation has only two parameters independent, which can be solved by the
recursion algorithm [17, 27].

When the parameters of the system are chosen, we can easily implement equation (1) by
the difference method [28]:

w(m, n) = (1 + γ · �t) · [w(m, n − 1) + w(m − 1, n)]

− (1 − 2γ · �t) · w(m − 1, n − 1) + x(m − 1, n − 1) · �t2

+ [a · w(m − 1, n − 1) − b · w(m − 1, n − 1)3] · �t2, (20)

where x = h + � is the input, �t is step length, for example, if the sampling frequency is
100 per pixel (ten by row and ten by column), �t = 0.1. The boundary condition is often set
to be zero. Here γ, a, b are the optimized parameters by equation (19).

Calculating λs
1 requires two double integrations. Calculating Pe also requires two

double integrations. How complex the optimization is depends on the number of recursions.
Fortunately, the recursion would converge in a few steps [17]. After optimizing parameters,
it is then quite efficient to process an image with equation (20), for it is a recursive difference
equation.

In order to see the phenomenon of traditional SR (that is, output performance reaches a
peak when increasing input noise), we use equation (20) with fixed system parameter γ, a, b

to process a noise-corrupted image where the input noise intensity is tunable. Figure 2 depicts
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(a) (b) (c)

Figure 4. (a) Image corrupted by Gaussian white noise with D = 4. (b) De-noise image using
equation (20) with γ = 0.8, a = −0.025, b = 0.05 and BER = 11.58%. (c) De-noise image
using a low-pass spacial filter, the output BER = 14.20%.

(a) (b)

(c) (d)

Figure 5. (a) Image corrupted by Gaussian white noise with D = 4. (b) De-noise image using
equation (20) with γ = 0.725, a = −0.1, b = 0.01 and BER = 6.16%. (c) De-noise image using
a low-pass spacial filter, the output BER = 7.67%. (d) De-noise image, first by using 2D PSR and
then a low-pass spacial filter, the output BER = 3.26%.
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(a) (b) (c)

Figure 6. (a) Image corrupted by geometry noise with the parameter p = 0.1; (b) de-noise image
using equation (20) with γ = 0.35, a = −0.14, b = 0.002 and BER = 10.71%; (c) de-noise
image using low-pass spacial filter, the output BER = 13.49%. We can see many ripples and
distortions due to a non-Gauss factor.

the bit error rate (BER) of the output image against the input noise intensity. From figure 2
we can see that the output BER reaches a minimum, which shows that traditional SR does
exist in our image processing.

Figure 3 shows an original binary image (a) corrupted by the 0,0,0 additive Gaussian
white noise which has intensity D = 1 (b). We first sample the corrupted image 100 times per
pixel (ten by row and ten by column). Then we can optimize the system parameters γ, a, b

according to the principle (19). Finally, we use equation (20) to process the noisy image. The
output is shown in figure 3(c), as compared with the use of a traditional linear filter shown in
figure 3(d). We can see that 2D-PSR image processing preserves more detailed characteristics
(more detailed characteristics of the hair, hat, lips, etc are remained in figure 3(c) than in
figure 3(d)), and the output BER is lower.

Now we increase D to 4, the outputs of 2D PSR and traditional linear filtering are shown
in figure 4. Obviously, when noise intensity becomes larger, 2D PSR performs much better
than low-pass filtering. That is because the 2D bistable system is robust to noise change. From
the above examples, we can see that the noisy image processed by 2D PSR holds much more
detailed characteristics than by linear filtering, and its output BER is lower.

Next, if we process the noisy image with a combined use of the two methods, the output
will perform even better, which can be seen in figure 5. As a consequence, we can claim that
the methods of 2D PSR and linear filtering are complementary.

When additive noise is not Gaussian, 2D PSR can still perform well due to its robustness,
while linear filtering may perform poor, for it is more relying on noise type. This point will be
transparent in the following example. To this end, let us add geometric noise [29] (parameter
p = 0.1) with zero mean to the original image. The performances of 2D PSR and low-pass
filtering are shown in figure 6. We can see that the output image, figure 6(c), is highly distorted
due to a non-Gauss factor, while the output image, figure 6(b), still looks fine relatively.

4. Conclusions

This paper develops an elementary theory of two-dimensional PSR, and preliminarily reveals
the potential application of SR techniques in nonlinear image processing. A novel nonlinear
SR system is proposed by extending the concept of PSR from the one-dimensional case to the
two-dimensional case. The stationary solution and the lower bound of the response speed of
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the SR system are derived. Optimization of system parameters based on the principle (19) can
minimize the bit error rate of the output image. Theoretically, calculated BER is in accordance
with our simulation results.

The superiority of 2D-PSR image processing, according to the above examples, is listed
below:

1. The 2D-PSR method can achieve lower BER, while holding more detailed
characteristics than a low-pass filter, especially when noise intensity is large.

2. Because 2D PSR and traditional linear filters are complementary, output can be
evidently improved by combining these two methods.

3. When additive noise is non-Gauss, 2D PSR, due to its robustness, will perform much
better than linear filters.

Nevertheless, further research is needed to improve this method and to extend it to more
complicated applications. Our findings along this line will be reported elsewhere.
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